1. Angus thinks of a number.

If he cubes his number and then adds 9 , he gets 17 .

What number is he thinking of?

(b)

2. Mikolaj works out that $770 \div 22=35$.

Write a multiplication that will check his division is correct.

3. Complete the following.

(ii) $£ 0.67+$ $p=£ 1$
4. Maja and Charlie are playing a 'think of a number' game.

Maja says:

I think of a number.
I add 4.
I multiply the result by 6 .
The answer is 72.

Find the number that Maja thought of.
5. A number is multiplied by 8.

The answer is positive and less than 8.

Find a possible number and complete the calculation.
=

Using this fact, write two different subtractions.
You can only use the numbers 5, 7 and 12 .

(b). Ana has some money.

She spends half of it buying a coat.
She gives half of what is left to her mum.
Ana now has $£ 20$

How much money did Ana have to start with?
7. Complete the following statements.

Question		Answer/Indicative content	Marks	Part marks and guidance	
1		2	2	M1 for 8 seen	
		Total	2		
2		$\begin{aligned} & 22 \times 35=770 \\ & \text { or } 35 \times 22=770 \end{aligned}$	1		Examiner's Comments Almost all candidates were able to answer this question on using checking strategies correctly. Some less able candidates gave answers such as $5 \times 7=35$ which did not relate to the original values in the question.
		Total	1		
3	i	-4	1		Examiner's Comments This was very well answered.
	ii	33	1		Condone $£ 0.33$ Examiner's Comments Quite a number of candidates gave the answer as $0.33 p$ instead of $33 p$ and overlooked the units given in the problem.
		Total	2		
4		8	2	M1 for 12 or for evidence of $\div 6$ then -4 Examiner's Comments There were many correct answers.	
		Total	2		
5		multiply by n, where $0<n<$ 1	1		

| Question | | Answer/Indicative content | Marks | Part marks and guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (their $n \times 8$ evaluated | 1FT | For FT must have $-1<n<$
 1 and $n \neq 0$
 Examiner's Comments | | |

